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Coordinating Host & Device

* Kernel launches are asynchronous
— Control returns to the CPU immediately

* CPU needs to synchronize before consuming the results

- cudaMemcpy(): Blocks the CPU until the copy is complete Copy begins when all
preceding CUDA calls have completed

- cudaMemcpyAsync(): Asynchronous, does not block the CPU

— cudaDeviceSynchronize(): Blocks the CPU until all preceding CUDA calls have
completed

* For consecutive kernel launches, it usually does not require
cudaDeviceSynchronize(). Consecutive kernels are queued at GPU to
be released one by one

— cudaDeviceSynchronize() is used to ensure host and device code are
synchronized.
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Device Management

* Application can query and select GPUs
- cudaGetDeviceCount(int *count)
— cudaSetDevice(int device)
- cudaGetDevice(int *device)
- cudaGetDeviceProperties(cudaDeviceProp *prop, int device)

* Multiple host threads can share a device

* A single host thread can manage multiple devices
— cudaSetDevice(i) to select current device
- cudaMemcpy(...) for peer-to-peer copies
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Thread Warps

* In CUDA, GPU scheduler always schedule threads in the units of warps

- A warp usually has 32 threads; although in theory, this number can change
based on GPU architecture

— Only threads in the same block will be put into a warp
- If there are fewer than 32 threads, idle threads will be scheduled and issued

* How thread warps are mapped to the SMs are usually not the concern
of programmers, e.g.,

— Each Nvidia Fermi GPU SM has 48 cores, 16 Load/Store units, 8 SFU and one
warp scheduler

- Each cycle, the warp scheduler may schedule two wraps (2*32 trheads) into the
execution pipeline

- Itis up to the scheduler to decide what two wraps are schedule to maximize the
utilization of hardware
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Thread Warp cont’d

* Threads in one warp are executed in lock step, instruction by
Instruction — this is the nature of SIMD architecture

— Branches in a warp introduces idling

- E.g., a warp of threads execute the following code; thread 0-15 execute
CODE_SEGMENT 1, thread 16-31 execute CODE_SEGMENT 2

* First, thread 0-15 execute segment 1, and thread 16-31 runs idle

e Second, thread 16-31 execute segment 2, and thread 0-15 runs idle
Some kernel:

if (condition) {
CODE_SEGMENT_1;
}

else({
CODE_SEGMENT_2;
}

— All threads in a warp should always execute the same code path, no
divergence, to minimize idling

Parallel Computing



Thread Warp cont’d

e Because a thread warp must have 32 threads

— If the thread count per block is not the multiple of 32, then idle threads
will be scheduled and issued

— Thread count per block should be close to the multiple of warp size

- E.g., for a total of 320 threads, with each thread take 110 cycles to
execute

» 32 blocks and 10 threads/per blocks result in:

- 32 wraps
- each warp has 10 real threads and 22 idle threads;

- Atotal of 32 * 110 = 3520 cycles
* 10 blocks and 32 threads/per block result in:

- 10 warps
- each warp has 32 real threads and O idle threads;
- Atotal of 10*110 = 1100 cycles
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Thread Warp cont’d

* Threads in a warp should access the memory In
the same pattern

- Some |load and store operations
- Preferable accessing consecutive memory regions

 What threads are in the same warp?

- From CUDA programming guide: "The way a block
IS partitioned into warps Is always the same; each
warp contains threads of consecutive, increasing
thread IDs with the first warp containing thread 0."
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Global Synchronization in CUDA

* Unfortunately, there is no easy way to do global
synchronizations in CUDA at the moment

e Barrier only syncs threads within a block

* For global barrier, programmers usually resorts
to multiple kernels

- One kernel represents one step

- Between kernels, tasks are synchronized back on
CPU
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Global Synchronization in CUDA
cont’d

 CUDA provides global atomic operations, which
theoretically allow implementation of global
synchronization primitives

- But implementations can be tricky

* CUDA has a memory fence
- _ threadfence()
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Caching on GPU

* Traditionally, GPU does not have hardware managed caches
— Graphic applications do not need hardware managed caches
— Saved transistors are devoted to CUDA cores

- There are software managed caches: shared memory, texture
cache and constant cache

* New generations of GPU provides L1 and L2 caches

- Motived by GPGPU workloads

- One L1 cache per SM, shared with shared memory or texture
cache

— One global L2 cache shared by all SMs
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A Historical View
Structure of

Shared memory:
- Practically a software managed L1 cache

Local memory:
- a storage for local variables that cannot be put in registers

- Originally not cached, now cached through new L1 and L2
cache

- Today local memory is mostly a concept than a real storage
Global memory:
- Main memory of a GPU

- Originally not cached, now cached through new L1 and L2
cache

Constant memory:
- Used to stored constant data, read-only
- Can be cached in constant cache

- Incorporated into main memory and L1/L2 cache in newer GPUs CPU

Texture memory:

- Used to store read-only data

- Can be cached in texture cache

- Incorporated into main memory and L1/L2 cache in newer GPUs
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Constant Memory

Used to store read-only data
Constant memory has limited size

Constant memory data are cached in constant cache (now
iIncorporated into L1/L2 caches)

— Traditionally, most data are not cached, i.e., data are discarded after use
- Reused data are declared as constant memory for fast reuse

Constant memory data are declared with key word  constant

Although all data are cached now, GPU may still optimized read-
only operations.

- Therefore, it may still be beneficial to use constant memory
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Texture Memory

Used to store texture data for graphic applications
- Read-only data

Texture memory data are cached in texture cache (now incorporated into
L1/L2 caches) for fast access

- Unlike constant memory, texture memory data are expressed in 1D, 2D or 3D
arrays to represent 2D/3D data locality

- 1D/2D/3D Data are preloaded to texture cache to improve performance

Texture memory data are declared with texture keyword, and need to be
explicitly bound with data in main memory using function cudaBindTexture

Although all data are cached now, GPU may still optimized texture-like
memory reads

- Therefore, it may still be beneficial to use texture memory
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Programming with OpenCL

OpenCL is another famous framework for programming
heterogeneous hardware, including GPU

OpenCL shares similar concepts with CUDA, e.g.,

- Routines running on GPU are also called kernels

- CUDA warp/thread are called weavefront/work-items on OpenCL
— Similar functions to copy data between CPU and GPU memory

OpenCL aims at supporting more than just GPU, including FPGA and
DSPs

CUDA is for Nvidia GPU

The actual performance of OpenCL and CUDA depends on hardware
support, library implementation quality and application code quality
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ROCmMm

* AMD'’s alternative to CUDA
- Radeon Open Compute ecosystem

* Understands OpenCL code

* HIP

- A common programming interfaces that supports
CUDA and ROCm

- Syntax very similar to CUDA

Parallel Computing

16



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

