
Parallel Computing 1

Some *Advanced* Topics About
GPGPU Programming

Wei Wang

Parallel Computing 2

Coordinating Host & Device
● Kernel launches are asynchronous

– Control returns to the CPU immediately
● CPU needs to synchronize before consuming the results

– cudaMemcpy(): Blocks the CPU until the copy is complete Copy begins when all
preceding CUDA calls have completed

– cudaMemcpyAsync(): Asynchronous, does not block the CPU
– cudaDeviceSynchronize(): Blocks the CPU until all preceding CUDA calls have

completed
● For consecutive kernel launches, it usually does not require

cudaDeviceSynchronize(). Consecutive kernels are queued at GPU to
be released one by one
– cudaDeviceSynchronize() is used to ensure host and device code are

synchronized.

Parallel Computing 3

Device Management
● Application can query and select GPUs

– cudaGetDeviceCount(int *count)
– cudaSetDevice(int device)
– cudaGetDevice(int *device)
– cudaGetDeviceProperties(cudaDeviceProp *prop, int device)

● Multiple host threads can share a device
● A single host thread can manage multiple devices

– cudaSetDevice(i) to select current device
– cudaMemcpy(…) for peer-to-peer copies

Parallel Computing 4

Thread Warps
● In CUDA, GPU scheduler always schedule threads in the units of warps

– A warp usually has 32 threads; although in theory, this number can change
based on GPU architecture

– Only threads in the same block will be put into a warp
– If there are fewer than 32 threads, idle threads will be scheduled and issued

● How thread warps are mapped to the SMs are usually not the concern
of programmers, e.g.,
– Each Nvidia Fermi GPU SM has 48 cores, 16 Load/Store units, 8 SFU and one

warp scheduler
– Each cycle, the warp scheduler may schedule two wraps (2*32 trheads) into the

execution pipeline
– It is up to the scheduler to decide what two wraps are schedule to maximize the

utilization of hardware

Parallel Computing 5

Thread Warp cont’d
● Threads in one warp are executed in lock step, instruction by

instruction – this is the nature of SIMD architecture
– Branches in a warp introduces idling
– E.g., a warp of threads execute the following code; thread 0-15 execute

CODE_SEGMENT_1, thread 16-31 execute CODE_SEGMENT_2
● First, thread 0-15 execute segment 1, and thread 16-31 runs idle
● Second, thread 16-31 execute segment 2, and thread 0-15 runs idle

– All threads in a warp should always execute the same code path, no
divergence, to minimize idling

Some kernel:
…
if (condition){

CODE_SEGMENT_1;
}
else{

CODE_SEGMENT_2;
}
…

Parallel Computing 6

Thread Warp cont’d
● Because a thread warp must have 32 threads

– If the thread count per block is not the multiple of 32, then idle threads
will be scheduled and issued

– Thread count per block should be close to the multiple of warp size
– E.g., for a total of 320 threads, with each thread take 110 cycles to

execute
● 32 blocks and 10 threads/per blocks result in:

– 32 wraps
– each warp has 10 real threads and 22 idle threads;
– A total of 32 * 110 = 3520 cycles

● 10 blocks and 32 threads/per block result in:
– 10 warps
– each warp has 32 real threads and 0 idle threads;
– A total of 10*110 = 1100 cycles

Parallel Computing 7

Thread Warp cont’d

● Threads in a warp should access the memory in
the same pattern
– Some load and store operations
– Preferable accessing consecutive memory regions

● What threads are in the same warp?
– From CUDA programming guide: "The way a block

is partitioned into warps is always the same; each
warp contains threads of consecutive, increasing
thread IDs with the first warp containing thread 0."

Parallel Computing 8

Global Synchronization in CUDA

● Unfortunately, there is no easy way to do global
synchronizations in CUDA at the moment

● Barrier only syncs threads within a block
● For global barrier, programmers usually resorts

to multiple kernels
– One kernel represents one step
– Between kernels, tasks are synchronized back on

CPU

Parallel Computing 9

Global Synchronization in CUDA
cont’d

● CUDA provides global atomic operations, which
theoretically allow implementation of global
synchronization primitives
– But implementations can be tricky

● CUDA has a memory fence
– __threadfence()

Parallel Computing 10

Caching on GPU
● Traditionally, GPU does not have hardware managed caches

– Graphic applications do not need hardware managed caches
– Saved transistors are devoted to CUDA cores
– There are software managed caches: shared memory, texture

cache and constant cache
● New generations of GPU provides L1 and L2 caches

– Motived by GPGPU workloads
– One L1 cache per SM, shared with shared memory or texture

cache
– One global L2 cache shared by all SMs

Parallel Computing 11

A Historical View of Memory
Structure of GPU

● Shared memory:
– Practically a software managed L1 cache

● Local memory:
– a storage for local variables that cannot be put in registers
– Originally not cached, now cached through new L1 and L2

cache
– Today local memory is mostly a concept than a real storage

● Global memory:
– Main memory of a GPU
– Originally not cached, now cached through new L1 and L2

cache
● Constant memory:

– Used to stored constant data, read-only
– Can be cached in constant cache
– Incorporated into main memory and L1/L2 cache in newer GPUs

● Texture memory:
– Used to store read-only data
– Can be cached in texture cache
– Incorporated into main memory and L1/L2 cache in newer GPUs

Parallel Computing 12

Memory Structure of Current GPU
(Nvidia Pascal)

Parallel Computing 13

Constant Memory
● Used to store read-only data
● Constant memory has limited size
● Constant memory data are cached in constant cache (now

incorporated into L1/L2 caches)
– Traditionally, most data are not cached, i.e., data are discarded after use
– Reused data are declared as constant memory for fast reuse

● Constant memory data are declared with key word __constant__
● Although all data are cached now, GPU may still optimized read-

only operations.
– Therefore, it may still be beneficial to use constant memory

Parallel Computing 14

Texture Memory
● Used to store texture data for graphic applications

– Read-only data
● Texture memory data are cached in texture cache (now incorporated into

L1/L2 caches) for fast access
– Unlike constant memory, texture memory data are expressed in 1D, 2D or 3D

arrays to represent 2D/3D data locality
– 1D/2D/3D Data are preloaded to texture cache to improve performance

● Texture memory data are declared with texture keyword, and need to be
explicitly bound with data in main memory using function cudaBindTexture

● Although all data are cached now, GPU may still optimized texture-like
memory reads
– Therefore, it may still be beneficial to use texture memory

Parallel Computing 15

Programming with OpenCL
● OpenCL is another famous framework for programming

heterogeneous hardware, including GPU
● OpenCL shares similar concepts with CUDA, e.g.,

– Routines running on GPU are also called kernels
– CUDA warp/thread are called weavefront/work-items on OpenCL
– Similar functions to copy data between CPU and GPU memory

● OpenCL aims at supporting more than just GPU, including FPGA and
DSPs

● CUDA is for Nvidia GPU
● The actual performance of OpenCL and CUDA depends on hardware

support, library implementation quality and application code quality

Parallel Computing 16

ROCm

● AMD’s alternative to CUDA
– Radeon Open Compute ecosystem

● Understands OpenCL code
● HIP

– A common programming interfaces that supports
CUDA and ROCm

– Syntax very similar to CUDA

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

